

Magnetospektroskopia warstw (Zn,Co)O

Jan Suffczyński, Krzysztof Gałkowski, Malwina Furman, Andrzej Witowski, Jan A. Gaj Uniwersytet Warszawski

Małgorzata Łukasiewicz, Elżbieta Guziewicz, Marek Godlewski Instytut Fizyki PAN

Plan prezentacji

- Próbki
- Układ eksperymentalny
- Wyniki:
 - Odbicie
 - Fotoluminescencja jonów Co
 - Spektroskopia fourierowska w NIR
- Podsumowanie
- Plany

Warstwy (Zn,Co)O

Nazwa próbki	Konc. Co (%) SIMS	Konc. Co (%) EDS	Grubość (nm)	T wzrostu (C)	Uwagi
f72	<0.1	0.4	1260	160	
f73	<0.1	0.6	1190	160	
f175	4.6	2.8	960	160	
f213	4.4	5.2	130	300	SQUID - ferro
f215	2.0	2.3	750	160	SQUID - para
f254	12.5	14.5	70	160	SQUID - ferro
f255	2.4	4.2	1040	160	
f257	<0.1	0.1	360	160	
f258_160C	<0.1	0.7	1380	160	
f258_800C	<0.1	0.7	1380	160	Wygrzewana w 800° C
f268	2.9	3.4	400	200	SQUID - ferro
f279	2.9	3.5	1400	300	SQUID - ferro
f328	4.0	19.5	50	200	SQUID - ferro
Z219		2.0	~ 500	560	produkcja - Valbonne

Próbki - struktura

Pomiar SEM – IF PAN Próbka f258

Niska temperatura wzrostu --> polikrystaliczna struktura próbek

Układ eksperymentalny

Analizator polaryzacji kołowej

Analizator kołowy:

o ustalonym położeniu: ćwierćfalówka + polaryzator liniowy i zmiana kierunku pola B lub ustalona ćwierćfalówka i obracany polaryzator liniowy

Widmo odbicia badanych próbek

Obszar przejść ekscytonowych w polu B

→ Brak rozszczepienia Zeemana przejść ekscytonowych

MCD w obszarze przejść ekscytonowych

 \rightarrow Brak mierzalnego MCD w obszarze ekscytonowym

→ Przesunięcie całego widma bez zmiany kształtu widma

→ Natężenie efektu < 0.25meV /7 T (<0.036 meV/T)

Przejścia poniżej przerwy (Zn,Co)O związane z jonami Co ?

→ Wygrzewanie zwiększa głębokość modulacji sygnału odbicia w energii poniżej przerwy (Zn,Co)O

→ Wygrzewanie zmniejsza absorpcję poniżej przerwy (Zn,Co)O – efekt związany z jonami Co?

→ Modulacja sygnału odbicia silniejsza w przypadku warstw o mniejszej zawartości Co

→ Obecność absorpcji związanej z jonami poniżej przerwy (Zn,Co)O?

Wyniki – pomiary fotoluminescencji

→ Przejścia wewnątrzjonowe w izolowanych jonach Co – nieobserwowane
→ Brak przejść wewnątrzjonowych koreluje się z brakiem ekscytonowego rozszczepienia Zeemana

Krawędź plazmowa absorpcji spektroskopia fourierowska w NIR

→ Krawędź plazmowa absorpcji dobrze widoczna w przypadku próbki wygrzewanej
→ W przypadku próbki "as grown" krawędź niewidoczna – rola niejednorodności?

- → W przypadku próbki "as grown" absorpcja w szerokim przedziale spektralnym NIR
- → Wygrzewanie poprawia jakość struktury

Podsumowanie

- Własności optyczne próbek:
 - słabo widoczne ekscytony lub ich brak w widmie odbicia
 - brak rozszczepienia Zeemana ekscytonów
 - brak fotoluminescencji jonów Co

Jony Co nie wbudowują się w izolowanych pozycjach kationowych

- Pomiar w polu magnetycznym: przesunięcie (<0.036 meV/T) całego widma odbicia bez zmiany kształtu widma
- Widoczna absorpcja związana z jonami poniżej przerwy energetycznej (Zn,Co)O?
- Wygrzewanie:
 - zmniejsza absorpcję w energii poniżej przerwy (Zn,Co)O
 - poprawia jakość struktury
 - zmienia koncentrację nośników swobodnych

Plany

- Korelacja własności optycznych w obszarze pod przerwą (Zn,Co)O i w NIR z danymi SIMS na próbkach wygrzewanych i niewygrzewanych
- Pomiary odbicia w szerokim przedziale spektralnym– położenie krawędzi absorpcji pasmowej w funkcji składu
- Magneto- PL w obszarze ekscytonowym z laserem He-Cd (dostawa – marzec'11)?
- Nowe próbki produkowane w wyższej temperaturze?

Absorpcja na wytrąceniach Co?

SIMS

Krawędź plazmowa absorpcji spektroskopia fourierowska w NIR

Absorption coefficient

Krawędź plazmowa absorpcji -